Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

نویسندگان

  • B S Shorrosh
  • K R Roesler
  • D Shintani
  • F J van de Loo
  • J B Ohlrogge
چکیده

Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase.

Plastidic acetyl-coenzyme A (CoA) carboxylase (ACCase) catalyzes the first committed reaction of de novo fatty acid biosynthesis. This heteromeric enzyme is composed of one plastid-coded subunit (beta-carboxyltransferase) and three nuclear-coded subunits (biotin carboxy-carrier, biotin carboxylase, and alpha-carboxyltransferase). We report the primary structure of the Arabidopsis alpha-carboxyl...

متن کامل

The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis.

The genes encoding two subunits of acetyl coenzyme A carboxylase, biotin carboxyl carrier protein, and biotin carboxylase have been cloned from Bacillus subtilis. DNA sequencing and RNA blot hybridization studies indicated that the B. subtilis accB homolog which encodes biotin carboxyl carrier protein, is part of an operon that includes accC, the gene encoding the biotin carboxylase subunit of ...

متن کامل

Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase.

Acetyl-CoA carboxylase is found in all animals, plants, and bacteria and catalyzes the first committed step in fatty acid synthesis. It is a multicomponent enzyme containing a biotin carboxylase activity, a biotin carboxyl carrier protein, and a carboxyltransferase functionality. Here we report the X-ray structure of the biotin carboxylase component from Escherichia coli determined to 2.4-A res...

متن کامل

Biochemical characterization of a Rhizobium etli monovalent cation-stimulated acyl-coenzyme A carboxylase with a high substrate specificity constant for propionyl-coenzyme A.

Biotin has a profound effect on the metabolism of rhizobia. It is reported here that the activities of the biotin-dependent enzymes acetyl-coenzyme A carboxylase (ACC; EC 6.4.1.2) and propionyl-coenzyme A carboxylase (PCC; EC 6.4.1.3) are present in all species of the five genera comprising the Rhizobiaceae which were examined. Evidence is presented that the ACC and PCC activities detectable in...

متن کامل

Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli.

Transcription of the biotin (bio) biosynthetic operon of Escherichia coli is negatively regulated by the BirA protein, an atypical repressor protein in that it is also an enzyme. The BirA-catalyzed reaction involves the covalent attachment of biotin to AccB, a subunit of acetyl coenzyme (acetyl-CoA) carboxylase. The two functions of BirA allow regulation of the bio operon to respond to the intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 1995